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ABSTRACT The pathogenic bacterium Xanthomonas campestris pv. campestris, the causal agent of black rot of Brassicaceae, ma-
nipulates the physiology and the innate immunity of its hosts. Association genetic and reverse-genetic analyses of a world panel
of 45 X. campestris pv. campestris strains were used to gain understanding of the genetic basis of the bacterium’s pathogenicity
to Arabidopsis thaliana. We found that the compositions of the minimal predicted type III secretome varied extensively, with 18
to 28 proteins per strain. There were clear differences in aggressiveness of those X. campestris pv. campestris strains on two Ara-
bidopsis natural accessions. We identified 3 effector genes (xopAC, xopJ5, and xopAL2) and 67 amplified fragment length poly-
morphism (AFLP) markers that were associated with variations in disease symptoms. The nature and distribution of the AFLP
markers remain to be determined, but we observed a low linkage disequilibrium level between predicted effectors and other sig-
nificant markers, suggesting that additional genetic factors make a meaningful contribution to pathogenicity. Mutagenesis of
type III effectors in X. campestris pv. campestris confirmed that xopAC functions as both a virulence and an avirulence gene in
Arabidopsis and that xopAM functions as a second avirulence gene on plants of the Col-0 ecotype. However, we did not detect the
effect of any other effector in the X. campestris pv. campestris 8004 strain, likely due to other genetic background effects. These
results highlight the complex genetic basis of pathogenicity at the pathovar level and encourage us to challenge the agronomical
relevance of some virulence determinants identified solely in model strains.

IMPORTANCE The identification and understanding of the genetic determinants of bacterial virulence are essential to be able to
design efficient protection strategies for infected plants. The recent availability of genomic resources for a limited number of
pathogen isolates and host genotypes has strongly biased our research toward genotype-specific approaches. Indeed, these do
not consider the natural variation in both pathogens and hosts, so their applied relevance should be challenged. In our study, we
exploited the genetic diversity of Xanthomonas campestris pv. campestris, the causal agent of black rot on Brassicaceae (e.g., cab-
bage), to mine for pathogenicity determinants. This work evidenced the contribution of known and unknown loci to pathogenic-
ity relevant at the pathovar level and identified these virulence determinants as prime targets for breeding resistance to X. camp-
estris pv. campestris in Brassicaceae.
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INTRODUCTION

Phenotypic variation is central for species adaptation and is due
to environmental and genetic variation. The latter often arises

from complex interactions between multiple loci. Understanding
the molecular mechanisms underlying most complex traits thus
remains a main challenge in evolutionary biology (1, 2). The first
step toward this goal is to perform linkage or association studies.
Association studies seek to identify the joint distribution between

genotype and phenotype in order to characterize the genetic vari-
ants responsible for phenotypic variation. Genome-wide associa-
tion (GWA) studies have proven to guarantee the detection of
significant associations in humans (2) and other model species (3,
4). Such GWA studies begin to emerge in the field of plant-pathogen
interactions (4, 5) and are becoming more accessible thanks to the
dropping cost of genotyping and sequencing technologies.

Among plant pathogens, the Xanthomonas genus is a complex
and large group of gammaproteobacteria that comprises at least
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19 species pathogenic to more than 400 host plants (6, 7). Xan-
thomonas campestris pv. campestris is a seed-borne pathogen dis-
tributed worldwide and the causal agent of black rot on leaves of
Brassicaceae of economic importance, such as cabbage, mustard,
and radish, as well as the model plant Arabidopsis thaliana (8).
Currently, there are four complete X. campestris pv. campestris
genomes available (9–12). X. campestris pv. campestris strains
have been classified in 9 races based on a discriminant set of resis-
tant/susceptible Brassica cultivars (13, 14), but the molecular basis
for the race annotation remains elusive.

To infect their host plants, bacteria of the Xanthomonas genus
rely on a large arsenal of virulence factors, such as adhesion fac-
tors, cell wall-degrading enzymes, extracellular- and lipo-
polysaccharides, and a type III secretion (TTS) system and associ-
ated type III effector proteins (T3Es) (6, 7). The TTS system is a
protein secretion apparatus used by animal and plant pathogens
or mutualists to deliver T3E virulence proteins directly into host
cells, where they can modulate the host’s physiology and manip-
ulate the host immune system. This TTS system and T3Es are
essential for virulence, since mutation in the TTS machinery limits
pathogen growth and symptom development, yet the loss of single
effector genes has often no or a limited impact on pathogenicity,
likely due to functional redundancy.

Plant innate immunity is a multilayer system (15). (i) Plants
monitor for the presence of conserved/generic pathogen-
associated molecular patterns (PAMPs) and activate PAMP-
triggered immunity (PTI) (16). For instance, flagellin is a PAMP
perceived by the FLS2 receptor at the Arabidopsis plasma mem-
brane (17). (ii) Plants can detect the modification of host compo-
nents by strain-specific T3Es, which trigger a rapid and specific
immune response (effector-triggered immunity [ETI]) (iii). Im-
portantly, T3Es are known to be able to suppress both PTI and ETI
caused by PAMPs and T3Es, respectively (18). Therefore, T3Es are
considered prime pathogenicity determinants for plant patho-
gens. In Xanthomonas, T3Es were called either Xop (Xanthomonas
outer protein) (19) or Avr (avirulence) proteins depending on
their mode of identification (see http://www.xanthomonas.org
/t3e.html). In available genomes, the T3E repertoires (called the
type III effectome) can be predicted based on homology to known
T3Es, on presence of eukaryotic features and/or of promoter mo-
tifs necessary for coexpression with the TTS system. T3Es can also
be identified experimentally using screens for TTS system-
coexpressed genes, in vitro demonstration of type III-dependent
secretion, and in planta demonstration of translocation. Such
analyses predict at least 72 T3Es in Ralstonia solanacearum
GMI1000 (20), 39 in Pseudomonas syringae pv. tomato DC3000
(21), and 36 in Xanthomonas axonopodis pv. vesicatoria 85-10
(22). So far, only 20 T3Es were reported in X. campestris pv.
campestris ATCC 33913 (22). However, a subset of these T3Es are
family or species specific; for instance, xopAC (originally called
avrAC) is exclusively found in X. campestris species and cannot be
found by simple homology searches with effectors from other
Xanthomonas species (22, 23). T3Es are distributed heteroge-
neously in bacterial populations. Thus, sizes of effectomes deter-
mined from sequenced strains are underestimates of the species or
pathovar T3E repertoires. Individual genomes are shaped by hor-
izontal gene transfer (HGT), a mechanism by which virulence
factors are distributed throughout genomes via transposable ele-
ments, plasmids, and phages. Because T3Es display characteristics
of heterogeneous distribution among strains, participate in host

defense suppression, and promote pathogen multiplication and
dispersion, T3Es are good candidates for, in part, explaining host
specificity in the plant-pathogenic species P. syringae (24) and
Xanthomonas axonopodis (25). To date, the genetic basis of
X. campestris host specificity remains unknown.

In this study, we report our findings of the natural genetic
variation of X. campestris pv. campestris using a panel of 45 strains
harvested worldwide on different host cultivars. Our goal was to
identify genes or loci with large virulence or avirulence effects
relevant at the pathovar level. The aggressiveness of these 45 nat-
ural strains was tested on two natural strains (accessions) of Ara-
bidopsis thaliana, and association studies were performed using
the presence/absence of T3E genes and a large set of amplified
fragment length polymorphism (AFLP) markers. The function of
candidate T3Es in pathogenicity was also tested by reverse genet-
ics. This study identified a set of T3E genes and AFLP markers
associated with pathogenicity. Our results highlight the complex-
ity of X. campestris pv. campestris pathogenicity and demonstrate
the dual virulence or avirulence role of T3Es.

RESULTS
High-resolution AFLP-based phylogeny and molecular evolu-
tionary genetics reveal a high genomic diversity in a world panel
of 45 X. campestris pv. campestris strains. We aimed to investi-
gate the genetic diversity within a collection of 45 X. campestris pv.
campestris strains, selected to maximize diversity based on geo-
graphic origin, host plant, year of isolation, and race (see Table S1
in the supplemental material; Fig. 1A). Multilocus sequence anal-
ysis (MLSA) performed on genes efp and glnA confirmed that the
selected strains were genuine X. campestris pv. campestris (Ta-
ble S1; Fig. S1A) (26), yet this MLSA organized the 45 X. campestris
pv. campestris strains in only 5 sequence types and thus had a very
low resolution. An AFLP analysis, which generates markers
throughout the genomes, was performed to determine more pre-
cisely the phylogenic relationships among these 45 X. campestris
pv. campestris strains (Fig. 1B). The X. campestris pv. raphani
strain CFBP5828 was used as the outgroup. Among the 1,942 neu-
tral markers identified, 929 polymorphic markers had a minor
allele frequency (MAF) of �5%. Based upon the AFLP results,
placement was supported by high bootstrap values (80%) of 39
strains from our total of 45. The remaining strains could not be
assigned unambiguously to any of those clades. Still, AFLP analy-
sis was highly discriminative relative to MLSA, since it relied on a
large number of informative polymorphic markers (Fig. S1A). For
this reason, AFLP analysis was preferred for subsequent studies.
The gene diversity (h) in the panel of the 45 strains is high (esti-
mated h, 0.185), considering that all strains belong to the same
pathovar. Irrespective of the distance between markers, a very low
averaged pairwise linkage disequilibrium (LD, defined as any non-
random association between markers) (R2V � 0.015, where R2V is
the R2 corrected by the relatedness of genotyped individuals; a
noncorrected LD was an R2 of 0.02) was found across the genome,
which was close to the expected value under complete equilibrium
(1/n � 0.02 [n � 45 strains]). These results are possibly a conse-
quence of the complex evolution of the bacterial genome, where
gene duplication, gene gain, and gene loss are common features.
Interestingly, the two X. campestris pv. campestris reference
strains 8004 and ATCC 33913 (clade C) shared more than 96%
marker identity, whereas strain B100 belonged to a distinct clade
(A). X. campestris pv. campestris strains harvested in China were
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present in all clades except clade E, suggestive of a worldwide and
human-based expansion of those strains. Finally, clade G strains,
though less closely related to the other X. campestris pv. campestris
strains, were still classified as X. campestris pv. campestris based on
MLSA definition established by Fargier et al. (26) and also because
these strains caused typical black rot symptoms on cabbage and
Chinese radish (27). Thus, clade G strains might represent a more
distant lineage of X. campestris pv. campestris that has not been
reported so far in the literature.

The Spearman rho rank correlation coefficient was calculated
to evaluate if the clade distribution might be consistent with life
history traits of the bacteria, factors including geographical origin,
host of harvest, and race. At the clade level, significant correlations
were found with the country of origin (� � �0.39, P � 0.01) and
with the race distribution (� � 0.44, P � 0.004). Because X. camp-
estris pv. campestris races were defined by the host range on dif-
ferent Brassica species, a significant clade/race correlation suggests
that the host may shape the evolution of X. campestris pv. camp-
estris.

X. campestris pv. campestris flagellin does not elicit FLS2-
dependent innate immunity in Arabidopsis. The bacterial flagel-
lin FliC and its 22-amino-acid peptide flg22 have been shown to be
potent elicitors of Arabidopsis innate immunity. Previous studies
have reported that eliciting and noneliciting variants of flg22 are
present in X. campestris pv. campestris (28) and might impact the
interaction with host plants. Thus, flg22 conservation in 43 X.
campestris pv. campestris strains and 1 X. campestris pv. raphani
strain was studied by sequencing the 5= region of fliC. Only two
DNA haplotypes could be identified (GenBank accession num-
bers JX453140 to JX453183). All X. campestris pv. campestris
strains but HRI6185 were predicted to produce an flg22 peptide
that avoids recognition by the Arabidopsis FLS2 receptor (see
Fig. S2 in the supplemental material) (28). The HRI6185 flagellin
was identical to that observed in X. campestris pv. raphani strain
CFBP5828 and was predicted to elicit FLS2-dependent immune
responses. Thus, any variation in pathogenicity that might be ob-
served among those 42 bacterial strains should not be attributed to
polymorphisms in the N terminus of X. campestris pv. campestris
flagellin, as most strains are predicted to escape recognition by
FLS2.

X. campestris pv. campestris strains harbor a highly variable
predicted type III secretome. Because T3Es are globally essential
for pathogenicity and are proposed to contribute to host specific-
ity (25, 29), we aimed at identifying and comparing the type III
secretomes in our panel of 45 X. campestris pv. campestris strains.
The genomes of the 3 sequenced strains, B100, ATCC 33913, and
8004, were first mined by searching by BLAST analysis for ho-
mologs of known type III effectors/secreted proteins (22; http:
//www.xanthomonas.org). In parallel, plant-inducible promoter
(PIP) boxes (consensus, TTCG-N16-TTCG), which control the in
planta expression of a large hrpX regulon in Xanthomonas, includ-
ing the TTS system and numerous T3Es, were searched (19, 30).
Twenty-nine genes encoding 11 validated T3Es (demonstrated
translocation), 15 effector candidates (predicted translocation),
and 3 type III secreted proteins (no translocation evidenced) were
identified. We preferred to categorize these proteins as type III
secretome or type III substrate proteins (T3SPs). The three refer-
ence X. campestris pv. campestris strains have at least 25 T3SP-
encoding genes in common. In addition, both of the closely re-
lated strains ATCC 33913 and 8004 contain xopD2, xopE2, and
xopJ5 (which encode at least 28 putative T3SPs), while strain B100
contains xopD1 (which encodes at least 26 putative T3SPs).

To investigate the natural genetic variation in these genes,
PCR-based detection of both partial and full-length sequences was
performed (Fig. 2). We defined a core type III secretome com-
posed of at least 15 genes that are present in more than 95% of the
strains and a variable type III secretome consisting of 14 genes. An
accuracy rate estimated from a dot blot analysis of a subset of 10
strains for 51% of the effectome (9 genes in the core effectome and
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6 in the variable effectome) was 99.4%, representing 1 conflict out
of 150 events; a xopX2 amplicon was present, but no hybridization
signal was visualized for strain CFBP5683. Minimal type III secre-
tome sizes varied considerably among the strains, ranging from 18
to 28 genes (average � 23). Genes encoding the variable T3SPs
were present on average in 58% of the strains. These results re-
vealed an important and formerly unknown diversity of the X.
campestris pv. campestris type III secretome composition at the
intrapathovar level. Gene xopX1 was present in only 31% of the
strains tested, while xopD was present with two mutually exclusive
alleles, which were defined as xopD2 (as found in X. axonopodis pv.
vesicatoria 85-10 and X. campestris pv. campestris 8004) (31) and
xopD1 (as found in X. campestris pv. campestris B100) (32). We
also classified the strains based on their type III secretome com-
position (see Fig. S1B in the supplemental material). The type III
secretome composition is a good descriptor of clades A, B, D, F,
and G, suggesting that it results for the most part from vertically
inherited genes, as observed in other phytopathogenic bacteria
(e.g., Xanthomonas axonopodis [25] and Pseudomonas syringae
[21]). Identical insertions of IS1478 in xopAL1 in 5 strains of clade
B further illustrate the vertical inheritance of T3SPs, yet some
incongruence for clades C and E was observed, indicating that
horizontal gene transfer also shaped the variable type III secre-
tome. Furthermore, the GC contents of the variable T3SP genes
based on the genes from the three sequenced strains were signifi-
cantly lower (56.3% � 7%; P � 1 � 10�5; n � 14) than in the rest
of the genes (65% � 4%) or the core type III secretome (62% �
4%; P � 0.0054; n � 15). This result suggests the existence of
relatively recent horizontal gene transfers within the variable type
III secretome. Insertion sequences (IS) were observed in 5 differ-
ent T3SP genes, with an average frequency per gene of 7%. Inser-
tions were predominant in the variable type III secretome (15 out
of 17 insertions). Interestingly, strain CN07 carries four genes
interrupted by IS elements, which might impact its host range.

In conclusion, both type III secretomes and genomes of these
X. campestris pv. campestris isolates show important natural vari-
ation at the intrapathovar level, which could be exploited for ge-
netic approaches.

Genome-wide association study of the pathogenicity of X.
campestris pv. campestris on Arabidopsis. In order to identify
natural genetic variants associated with pathogenicity traits on
Arabidopsis, we inoculated all 45 strains on both the Columbia-0
(Col-0) and Kashmir (Kas) ecotypes by piercing plant leaves. The
aggressiveness among strains varied with each accession, from
avirulence (disease index [DI] � 1) to full virulence (DI � 3), and
infection outcomes were very different between the two natural
accessions (Fig. 2; Fig. S3). A general loss of virulence cannot ex-
plain the weak aggressiveness of some strains on Arabidopsis; most
strains were virulent on at least one host plant (13, 14, 27), and all
strains carrying avrBs1 caused a TTS-dependent hypersensitive
response (HR) in resistant pepper ECW-10R, indicating that their
TTS system was functional (Fig. 2).

We were interested in investigating the natural genetic varia-
tion of the strains for pathogenicity to plants of the Col-0 and Kas
ecotypes at 7 days postinoculation (dpi), the time at which symp-
toms were the strongest. Phenotyping data quality was assessed by
calculating the upper bound of the broad-sense heritability (H2)
(33). We found suitable values of H2 from our three replicates (H2

� 0.74 for Col-0; H2 � 0.94 for Kas). A genome-wide association
study was performed with 29 T3SP markers (15 full-length coding

sequences [CDS], 14 5= CDS) and 929 AFLP markers. Three of the
core effectome genes (xopX2, xopP, and xopF) were included in the
analysis because polymorphic amplification patterns were ob-
served for one of the PCR markers. To limit the chance of making
type I errors, a false-discovery rate (FDR) of 0.05 (P � 0.003 for
Kas; P � 0.001 for Col-0) was used. Nonparametric Wilcoxon
rank tests with an FDR correction at 5% were also performed,
assuming nonnormal distribution. These tests showed 75% con-
gruence of significant markers with the efficient mixed model for
Col-0 and Kas data.

With an FDR of 0.05, 28 (2 T3SP markers/26 AFLPs) and 61 (4
T3SP markers/57 AFLPs) significant variants for each trait at a
threshold of 7 dpi were detected on Col-0 and Kas ecotypes, re-
spectively (Fig. 3A and C and S4A; Table S2). Pairwise linkage
disequilibrium (LD) was estimated among all significant markers
(average LD, R2V � 0.08) (Fig. S5). No complete linkage between
T3SP and AFLP markers was observed, suggesting that more DNA
variants than the currently known T3SPs in the genome were de-
tected. The markers with known physical positions based on their
positions in reference strain 8004 presented an average LD value
of 0.14, much higher than the average LD observed for all markers
(R2V � 0.015) (Fig. S5). This result may suggest some epistatic
interactions between the T3SP loci or their simultaneous acquisi-
tion by the genome.

The effectors xopAC (also called avrAC) and xopJ5 on Kas and
xopAL2 on Col-0 plants (Fig. 3A and B) were significantly associ-
ated with variation in bacterial pathogenicity at 7 dpi. Interest-
ingly, the Wilcoxon nonparametric test revealed significant asso-
ciations for the following effectors: avrBs1, xopAC, and xopH on
Col plants and xopAC, xopJ5, and xopF on Kas plants (Table S3).
These T3E markers were fairly common (with a MAF between 26
and 49%). The contribution of these T3E loci to pathogenicity to
Arabidopsis was previously unknown except with xopAC (34).
However, one has to be cautious in interpreting these results with
a sample size of 45 strains. Sufficient statistical power (~80%) can
be reached only for quantitative trait loci (QTL) of very large
effects that explain more than 50% of the total phenotypic vari-
ance (3). When we consider a more stringent nominal significance
threshold of 10�5, only 6 markers are significant on Kas plants
(including the effectors xopAC and xopJ5) and none are significant
on Col-0 plants. The direction and size of the effects estimated
from the difference between the mean phenotypic values of the
two alleles at each locus are presented in Fig. 3B and S4B. More
effects are associated with increased pathogenicity on Col-0 than
on Kas plants (�2 � 5, P � 0.03), and the intensity of virulence
effects was higher on Col-0 than on Kas plants (Wilcoxon test, W
� 207, where W is the smaller of the rank totals; P � 1.1 � 10�8).
Interestingly, the markers significantly associated with X. campes-
tris pv. campestris pathogenicity in Col-0 or Kas plants are essen-
tially different, with only 22% of the markers being common to
both responses (Fig. 3C). These 16 markers did not include T3SP
markers. Interestingly all showed opposite effects between the two
plants: increased pathogenicity to Kas plants but reduced patho-
genicity (i.e., avirulence) to Col-0 plants. Thus, these findings il-
lustrate the dual roles of these genetic variants, which depend on
host genotype.

A reverse-genetics approach indicates that xopAM confers
partial avirulence to X. campestris pv. campestris 8004 on Ara-
bidopsis plants of ecotype Col-0. We assessed the contribution to
pathogenicity of the predicted T3SP genes of X. campestris pv.
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campestris 8004 by constructing single or double T3SP gene dele-
tions; we studied all 28 genes except xopAL2, xopA, hpaA, avrBs2,
and xopAG from the core type III secretome. Col-0 and Kas plants
were inoculated with each mutant (Fig. 4 and S6). No significant

effect was observed on Kas plants (Fig. S6A). Only the �xopAC
and �xopAM mutants showed a significantly increased aggressive-
ness on Col-0 plants compared to that of the wild-type strain (wt)
and all other mutants (P � 10�3 for all significant comparisons)
(Fig. 4A). Both mutant phenotypes could be complemented
(Fig. 4B and 5C). These results indicate that xopAC and xopAM
contribute to the avirulence of X. campestris pv. campestris 8004
on Col-0 plants, yet xopAM seems to confer a limited avirulence to
X. campestris pv. campestris on Col-0 plants (average mean differ-
ence between the �xopAM mutant and the wt, �1.25) compared
to that conferred by xopAC (between the �xopAC mutant and the
wt, �2.25) (Fig. 4B). Interestingly, the �xopAC �xopAM double
mutant behaved like the xopAM mutant, so that the �xopAM mu-
tation was epistatic to the xopAC mutation in terms of symptom
development. However, the bacterial growth of the xopAM dele-
tion mutant in planta was not significantly increased in Col-0
leaves, unlike that of the �xopAC and �xopAC �xopAM mutants
(Fig. 4C). In conclusion, the conserved effector XopAM is a novel
determinant of X. campestris pv. campestris 8004 avirulence on
Col-0 plants that does not affect bacterial growth under the con-
ditions tested.

Natural genetic variation at the xopAC locus. Our association
data based on the presence or absence of xopAC suggest that all
xopAC allelic variants are able to confer avirulence to X. campestris
pv. campestris on Col-0 plants. We thus sequenced the xopAC
locus of the 29 xopAC-containing X. campestris pv. campestris
strains (Fig. 5A) (GenBank accession numbers JX453111 to
JX453139). Sequencing data covered 473 bp upstream of the an-
notated start site to 53 bp after the stop codon. Seven bi-allelic
single-nucleotide polymorphisms (SNPs) were identified: two in
the cis-regulatory regions and five nonsynonymous substitutions
in the xopAC coding sequence. The XopAC protein is composed
of an N-terminal leucine-rich repeat (LRR) domain and a
C-terminal Fic (Filamentation induced by cyclic AMP) domain.
Four out of these five substitutions occur in the Fic domain and
none in the LRRs (Fig. 5A and B). However, core residues of the
Fic domain were absolutely conserved, suggesting that these poly-
morphisms should not abolish enzymatic functions of the four
XopAC haplotypes (A to D) (Fig. 5). Haplotype B (20 out of 29
occurrences) is present throughout the phylogenetic tree (Fig. 2).
Haplotype D was exclusively found in 4 Chinese strains, but Chi-
nese strains also expressed XopAC of the B and C haplotypes.
Haplotype C was also found in X. campestris pv. raphani strain
CFBP5828. In order to test the functionality of all four haplotypes,
complementation tests were performed with X. campestris pv.
campestris 8004 �xopAC. Strains were inoculated onto Col-0
plants (Fig. 5C). While xopAC deletion strains were virulent, all
four complemented mutants of X. campestris pv. campestris 8004
�xopAC were avirulent to similar extents (P � 0.001). The same
complementation tests on Kas plants did not reveal any significant
variation in pathogenicity (Fig. 5E). These experiments indicate
that strains of all four XopAC haplotypes are functionally equiv-
alent in avirulence on ecotype Col-0 plants.

These sequences were then used to perform association tests on
haplotype variants of the xopAC sequence (28 strains). A signifi-
cant haplotype effect was evidenced on both ecotypes at 7 dpi (P �
4.17 � 10�9 on Col-0 and P � 1.02 � 10�8 on Kas plants). An
association test for the SNP effect showed one significant associa-
tion with Kas plants for the nonsynonymous I409V SNP present
in the Fic domain (P � 0.02 by the nonparametric test). In Kas

FIG 3 Association study results 7 days after inoculation on Col-0 (dots) and
Kas (diamonds) plants. (A) Negative log10 of the P values from an association
test of the effector markers along the chromosome of the X. campestris pv.
campestris 8004 reference strain. (B) Average phenotypic differences mea-
sured at each significant effector. The significant markers (FDR at 5%) and
their respective effects are in red (pathogenicity effect) or blue (avirulence
effect). Dashed lines indicate q values (minimum FDR adjusted p-value at
which the test may be called). (C) The overlap between the AFLP and T3SP
markers associated with gain (red) or loss (blue) of pathogenicity in Col-0 and
Kas plants is represented using a Venn diagram. Avr, avirulent; Vir, virulent.
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plants, the substitution of I for V (minor allele) was associated
with a decrease of DI. The pairwise linkage disequilibrium at the
locus is intermediate (average R2V of 0.26) (Table S4).

Since the four haplotypes seem functionally equivalent in con-
ferring avirulence to X. campestris pv. campestris 8004, either the
detected association is not causal or there are other interacting
haplotype-specific genetic factors that are absent/present from the
X. campestris pv. campestris 8004 genetic background.

Visualization of xopAC virulence functions in Arabidopsis
depends on X. campestris pv. campestris strain genotype. To test
these hypotheses, xopAC was also deleted from two other X. camp-
estris pv. campestris strains (HRI3811 and CN05), which differ in
the composition of their variable type III secretomes. Again, the
deletion event rendered the strains virulent to Col-0 plants with
the same phenotypic differences as previously observed (Fig. 5D),
demonstrating that haplotypes B and D in their respective back-
grounds are functional (P � 1.2 � 10�12). The insertion of hap-
lotype A in both deletion strains rescued the avirulent phenotype
(Fig. 5D). On Kas plants, CN05 �xopAC (but not HRI3811
�xopAC) was weakly but significantly less aggressive than its wild
type (P � 0.0003) (Fig. 5F), suggesting that in this particular ge-
netic background, we may observe a significant contribution of

xopAC to pathogenicity. Interestingly, CN05 is a very virulent
strain with only 5 predicted variable T3SPs. To study this pheno-
type further, in planta bacterial populations of the xopAC mutants
were measured in Kas leaves inoculated by piercing. At 5 dpi, the
�xopAC mutation did not significantly affect the growth of strains
HRI3811 and CN05 (Fig. 5G). Thus, the virulence role of xopAC
on Kas leaves could be visualized by forward genetics in one but
not two other X. campestris pv. campestris strains and for symp-
tom development but not in planta growth. This suggests that
xopAC’s contribution to pathogenicity might be masked by some
genetic background effects in several strains due to functional re-
dundancy or slightly different virulence strategies.

DISCUSSION
X. campestris pv. campestris genetic diversity was unsuspected
based on the available reference genomes. In this study, we ob-
served substantial genetic and phenotypic variation in our collec-
tion of X. campestris pv. campestris strains, likely illustrating the
potential of adaptation of the species to infect different hosts and
to adjust to environmental heterogeneity. A world collection of 45
X. campestris pv. campestris strains collected over 55 years mostly
on diseased Brassica oleracea and Brassica rapa was gathered. Their
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identification as X. campestris pv. campestris was confirmed by
MLSA. However, robust phylogenetic relationships could be in-
ferred only from detailed AFLP analysis, which generates markers
throughout the genome. This approach clearly identified one co-
herent genomic group encompassing all X. campestris pv. camp-
estris strains. It also unraveled a significant level of genetic diver-
sity and a low LD among markers, suggesting that recombination
may be common in X. campestris pv. campestris populations. An-
other explanation for a low LD could be a high level of HGT and
insertion/deletion markers (indels). Clade G strains seem quite

distinct at the genomic level from other X. campestris pv. campes-
tris clades, yet those strains were unambiguously identified as X.
campestris pv. campestris by MLSA and caused typical black rot
symptoms on Chinese radish (27). Thus, clade G might represent
an uncharacterized group of X. campestris pv. campestris strains
for which genome sequence data would be very informative. In-
terestingly, X. campestris pv. campestris phylogeny was only par-
tially accounted for by the geographic origins of the strains. For
instance, Chinese strains (CN) were distributed in all X. campestris
pv. campestris clades but one, which suggests an efficient intro-
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duction into China of strains from worldwide origins or vice versa.
Finally, we also observed that the two X. campestris pv. campestris
reference strains 8004 and ATCC 33913 are very closely related
and that both belong to clade C, while X. campestris pv. campestris
B100 belongs to clade A. Thus, these three X. campestris pv. camp-
estris reference genomes are not representative of the natural di-
versity of this pathogen. Whether this diversity originates from
large indels, gene gain, or gene loss, SNPs or the presence of a
plasmid would have to be determined by whole-genome sequenc-
ing.

High diversity of the type III secretome composition is ob-
served within X. campestris pv. campestris. The type III secre-
tome predictions for X. campestris pv. campestris can provide only
an estimate of the effectome’s minimal size. It varied from 18 type
III substrates for strain CFBP12824 to 28 for strains 8004, ATCC
33913, and HRI3851A. We found a significant negative correla-
tion between the type III secretome size and aggressivity on Kas
plants (P � 0.007, � � �0.39). Genetic diversity observed among
X. campestris pv. campestris strains suggests that genome sequenc-
ing might unravel other T3SPs that are absent from the genomes
of the 3 X. campestris pv. campestris reference strains or other
Xanthomonas pathovars (12). Furthermore, no systematic exper-
imental T3SP mining has been reported for X. campestris pv.
campestris yet. Thus, the size and composition of these type III
secretomes are likely underestimated; X. campestris pv. campestris
type III secretome sizes are increasing compared to earlier esti-
mates (20 T3SPs in X. campestris pv. campestris ATCC 33913)
(22) and are now in the range of those of many other Xanthomonas
strains (20 to 34 non-transcription activator-like T3Es) (22, 35)
and P. syringae pathovars (9 to 39 Hrp-dependent outer proteins
[Hops]) (21). Only functional screens and analyses of the com-
plete genomes would fully uncover the X. campestris pv. campes-
tris type III secretome, as was done for X. axonopodis pv. maniho-
tis (35).

Interestingly, the X. campestris pv. campestris type III secre-
tome is highly polymorphic; the X. campestris pv. campestris core
type III secretome is essentially identical to the Xanthomonas core
type III secretome (22). Within the variable type III secretome,
XopD is present in two variants, XopD1 and XopD2, whose
N-terminal extensions differ and whose distributions are mutu-
ally exclusive. Importantly, it was recently reported that both iso-
forms are not functionally equivalent (36). These observations of
high type III secretome diversity at the pathovar level are in agree-
ment with other recent observations of X. axonopodis pv. mani-
hotis or P. syringae pv. avellanae (35, 37). These observations con-
trast with earlier work performed with X. axonopodis where little
variation in type III secretome composition was observed at the
pathovar level (25). Both vertical and horizontal inheritances of
T3SPs in X. campestris pv. campestris are suggested by our analy-
sis. On the one hand, IS1478 insertion in xopAL1 throughout clade
B indicates that vertical inheritance of T3SPs plays a role in X.
campestris pv. campestris. On the other hand, the low GC content
of the variable type III secretome of X. campestris pv. campestris
8004 and the variability of the type III secretome within genomic
clades (e.g., X. campestris pv. campestris E) suggest the occurrence
of horizontal gene transfers (Fig. 2).

A genome-wide approach to identify pathovar-relevant
rather than strain-specific pathogenicity determinants in X.
campestris pv. campestris. The observed genomic diversity
among these 45 X. campestris pv. campestris strains indicates that

the three reference genomes are not representative of the natural
X. campestris pv. campestris diversity. Thus, some of the knowl-
edge acquired from those three strains might not be transferrable
to many other X. campestris pv. campestris strains and might be of
limited interest with regard to our understanding of X. campestris
pv. campestris biology and pathogenicity evolution. Similarly,
several biologically relevant processes might be ignored because
they are absent from those three strains.

GWA was performed on candidate genes and AFLP markers,
leading to the identification of 73 significant markers with a low
LD. These results suggest that X. campestris pv. campestris patho-
genicity is controlled by many genetic determinants rather than by
a few factors. However, these findings are not contradictory to the
hypothesis that a proportion of these genetic determinants may be
located within genomic islands, as was observed in P. syringae and
Pseudomonas viridiflava (5, 38). Genomic islands can indeed har-
bor many loci acquired independently via HGT. The exact cover-
age of our study is unfortunately unknown. Assuming a random
distribution of the 929 AFLP markers in the X. campestris pv.
campestris genome (average LD � 0.015), we would have a
marker every 5.5 kb (the X. campestris pv. campestris 8004 genome
is ~5.15 Mb). However, this estimate is highly unlikely because of
the poor correspondence between the LD and chromosomal dis-
tance in bacterial genomes. With only 45 strains and a low LD
among markers across the genome, our GWA certainly lacks sta-
tistical power, so true associations are likely being missed. In best-
case scenarios, only QTL with large effects can be identified (3,
39). In future studies, using a larger sample size and genome data
should greatly improve this GWA approach and should allow the
detection of variants associated with smaller phenotypic effects.
Besides, our current approach precluded the possibility that
T3SPs detected by PCR would be expressed and functional.
Though this was verified for XopAC, studying polymorphisms
within T3SP sequences and whole-genome data should allow the
detection of subtler haplotypic differences which affect gene func-
tion or expression. For instance, a significant haplotype effect at
the xopAC locus was detected and could be pinpointed to one SNP
corresponding to amino acid position 409 located in the Fic do-
main. This polymorphism was associated with a change in patho-
genicity on Arabidopsis of ecotype Kas. It might be worth testing
experimentally by site-directed mutagenesis in several X. campes-
tris pv. campestris strains whether this polymorphism impacts
xopAC virulence and avirulence functions.

Functional validation of these associations between the pres-
ence of T3SPs and increased aggressiveness was tested experimen-
tally with single- or double-deletion mutants of X. campestris pv.
campestris 8004. Except for the xopAC strain, none could be con-
firmed because either the effect is too small to be detected with the
current patho-assay or the T3SP gene is not the causal determi-
nant of the association but a linked polymorphism. Alternatively,
the X. campestris pv. campestris 8004 genetic background might
mask these subtle virulence effects. In support of this hypothesis,
xopAC virulence functions on Arabidopsis could be observed only
for strains CN05 (ecotype Kas) and B186 (Col-0) (34), not strains
HRI3811 and 8004. Both strains B186 and CN05 are highly aggres-
sive on Arabidopsis, and strain CN05 has one of the smallest pre-
dicted effectomes of the 45 X. campestris pv. campestris strains
studied here, yet xopAC virulence functions on cabbage were eas-
ily detected in X. campestris pv. campestris 8004 (34), suggesting
that these genetic background effects are both strain and host spe-
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cific. Detecting avirulence functions can also be problematic, since
many effectors suppress ETI themselves, as was observed in P. sy-
ringae (40) or X. axonopodis (41). The effect of such suppressors
may explain why we did not validate xopJ5’s avirulence function in
strain 8004 on Arabidopsis of ecotype Kas. Finally, our results
show differences in intensity and direction of effects of markers,
depending on the plant genetic background, suggesting that these
bacterial genes meet different proteins/networks in the plant. All
these observations suggest that complex genetic interactions will
complicate the validation of the GWA results and that mutational
approaches should be performed with multiple strains to draw
solid conclusions.

The avirulence of X. campestris pv. campestris 8004 on Col-0
plants is mediated by both xopAC and xopAM. The XopAC
avirulence role in X. campestris pv. campestris strain 8004 was well
known from previous studies (23). Our association studies con-
firmed that xopAC is a major avirulence gene in natural X. camp-
estris pv. campestris isolates and suggests that the 4 haplotypes are
functionally equivalent with respect to their avirulence properties.
Protein sequence alignments showed that the LRRs necessary for
interaction with potential substrates, such as RPM1-induced pro-
tein kinase (RIPK) and Botrytis-induced kinase 1 (BIK1) (34), are
highly conserved. Only a few polymorphisms were identified
around the Fic region without affecting the Fic consensus motif
important for uridylylation of substrate proteins. The avirulence
function of these four haplotypes was confirmed on Col-0 plants
by deletion and complementation approaches. Importantly,
XopAH (also called AvrXccC), a T3E of the fido family (like
XopAC) (42), did not confer avirulence in our assays, in contrast
to published results with the same strain (43), and it was not as-
sociated with avirulence on Col-0 plants in GWA studies at the
population level. Thus, this GWA analysis suggests that other ef-
fectors, such as xopAC, avrBs1, or xopH, are determinants of
avirulence on Arabidopsis of the Col-0 ecotype for X. campestris
pv. campestris.

Still, conserved invariable genes are not amendable to GWA
studies, and conserved T3SPs were studied by reverse genetics in
X. campestris pv. campestris 8004. Besides the known pathogenic-
ity function of the conserved effector gene xopAM on Chinese
radish (10), the avirulence function of xopAM on Col-0 plants was
revealed by our study. Thus, xopAM is a prime target for breeding
resistance into Brassicaceae. XopAM is a 2,049-amino-acid pro-
tein highly conserved in X. campestris pv. campestris with homol-
ogies to HopR1 from P. syringae. This T3E belongs to the AvrE
DspA/E HopR family of effectors, which is widely distributed in
type III-containing phytopathogenic bacteria (44). dspA/E was
shown to be essential for Erwinia amylovora virulence (45). In
Nicotiana benthamiana, hopR1 was also shown to be important for
suppression of callose deposition and growth of a P. syringae pv.
tomato DC3000 mutant with compromised pathogenicity (44).
Virulence targets for members of the AvrE DspA/E HopR family
are yet unknown. Interestingly, the xopAM mutation was epistatic
to the xopAC mutation for virulence but not bacterial growth.
Several scenarios could be proposed to explain such observations.
For instance, both xopAM and xopAC may have avirulence activ-
ity, and epistasis could explain the reduced virulence of the double
mutant. However, such virulence functions are not visible in the
susceptible Kas ecotype (Fig. S6), and other Arabidopsis genotypes
should be tested to exclude genotype-specific susceptibility in Kas
versus Col-0 plants. Alternatively, xopAM and xopAC might sup-

press recognition of a yet-unknown avirulence gene on Col-0
plants in a manner similar to the suppression of avrBs1-dependent
HR on pepper by avrBsT in X. axonopodis pv. vesicatoria (41).
Obviously, prime candidates are the T3E genes identified in our
GWA analysis. However, many other hypotheses could be envis-
aged for the moment, but only detailed genetic and biochemical
analyses will resolve these questions in the future.

This genome-wide association study of a bacterial plant patho-
gen evidences the relevance of using complementary multidisci-
plinary approaches; GWA has its advantages but also its own lim-
itations, which have to be supplemented with other classical
strain-specific genetic approaches. With the decreasing cost of
whole-genome sequencing and genotyping, such generic GWA
studies may allow us to dissect our favorite biological questions
with new perspectives and broader relevance.

MATERIALS AND METHODS
Bacterial strains, plasmids, and growth conditions. X. campestris pv.
campestris strains and plasmids used in this study are listed in Table S1 in
the supplemental material. X. campestris pv. campestris cells were grown
at 28°C in MOKA medium (46). Escherichia coli cells were grown on
Luria-Bertani medium at 37°C. For solid media, agar was added at a final
concentration of 1.5% (wt/vol). Antibiotics were used at the following
concentrations: for X. campestris pv. campestris, 50 �g/ml rifampin,
50 �g/ml kanamycin, and 5 �g/ml tetracycline, and for E. coli, 50 �g/ml
ampicillin, 25 �g/ml kanamycin, 40 �g/ml spectinomycin, and 10 �g/ml
tetracycline. Spontaneous rifampin-resistant derivatives of X. campestris
pv. campestris HRI3811 and CN05 were selected on MOKA-rifampin.

Plant material, growth conditions, and infection tests. Arabidopsis
plants were grown on Jiffy pots in a growth chamber at 22°C, with a 9-h
light period and a light intensity of 192 �mol m�2 s�1. Natural variation
in X. campestris pv. campestris pathogenicity was assayed on the A. thali-
ana natural accessions Columbia and Kashmir by piercing inoculation of
a bacterial suspension at 108 CFU/ml as described previously (47). Each of
the 45 strains was tested on 4 plants per ecotype and 4 leaves per plant.
Three independent repetitions were done in 16 blocks. After inoculation,
plants were covered by a plastic film and kept at nearly 100% relative
humidity. Disease development was scored from 3 to 7 dpi using a disease
index ranging from 0 (no symptom) to 4 (full leaf necrosis) as described
previously (47). Single-deletion mutants and complemented strains of the
X. campestris pv. campestris 8004, HRI3811, and CN05 backgrounds were
tested on Col-0 and Kas plants using 4 plants and 16 leaves in 3 indepen-
dent replicates. Annotations were done at 3 to 10 dpi (Fig. 4C and D).
Nonhost ECW-10R pepper plants were grown and inoculated at an opti-
cal density at 600 nm (OD600) of 0.4 as previously described (48). The HR
was scored 36 h postinfiltration.

Detection and analysis of endogenous X. campestris pv. campestris
plasmids. Plasmids were isolated from overnight cultures in liquid
MOKA medium as described previously (49) and resolved by electropho-
resis on a 0.7% agarose gel. Plasmids pXCV2, pXCV19, pXCV38, and
pXCV183 isolated from X. axonopodis pv. vesicatoria 85-10 were used as
size makers to estimate the size of X. campestris pv. campestris plasmids.

PCR-based detection of T3E genes in X. campestris pv. campestris
strains and dot blotting. Two genomic DNA (gDNA) extractions were
prepared independently for each strain as described by the manufacturer
(50) and used either for dot blot or PCR analyses. The presence of T3E
genes was determined using 2 pairs of gene-specific primers designed
from the X. campestris pv. campestris 8004-orthologous sequence but
lacking small genes, such as xopA, xopG, and xopH. For each gene, one of
the primer pairs amplified the full-length T3SP DNA sequence, while the
other one amplified a shorter sequence of ca. 300 bp usually in the 5=
coding region. All oligonucleotide sequences are available upon request. A
reaction was considered positive (the gene was present) if a single clear
band with the expected size was observed after separation on 1% agarose
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gel. Dot blot hybridizations were performed on a subset of genes (n � 15)
for 10 strains with the probe set and hybridization conditions described in
reference 25. The estimated accuracy rate with regard to consistency over
replicated experiments and internal controls is ca. 99.4%.

Determination of in planta bacterial populations. Six leaves from
different plants were inoculated by piercing the leaves with an X. campes-
tris pv. campestris suspension of 108 CFU/ml. Three pools of two leaf discs
encompassing the inoculated zones were sampled using a cork borer (area
� 0.33 cm2) at 0 or 5 days after inoculation. Fresh tissues were homoge-
nized in 200 �l sterile water. Serial dilutions of the homogenates were
performed, and a 5-�l drop was spotted for each dilution on plates sup-
plemented with appropriate antibiotics. The plates were incubated at
28°C for 48 h, and colonies were counted in spots containing 1 to 30
colonies. Experiments were performed at least three times.

Sequencing of T3SP genes and fliC fragment and sequence data
analysis. The xopAC locus and fliC 5= region were PCR amplified from
genomic DNA using primers LN191/LN193 and LN625/LN626, respec-
tively (sequences are available upon request). During PCR-based detec-
tion of T3E genes, single amplicons with an unexpectedly large size were
excised from the gel and revealed the presence of IS elements in several
T3E genes. After purification (Wizard SV gel and PCR cleanup purifica-
tion kit; Promega), each amplicon was sequenced and analyzed using
Geneious software (Biomatters, New Zealand).

The average GC contents of the core and conserved type III secretome
were calculated from the GC content of each T3SP CDS as inferred from
Geneious and compared to the whole-genome GC content.

X. campestris pv. campestris genotyping. In order to confirm that all
strains from our working collection were indeed X. campestris pv. camp-
estris, we performed an MLSA with the efp and glnA amplicons as de-
scribed previously (26).

Amplified fragment length polymorphism (AFLP) analysis with the
SacI and MspI restriction enzymes of X. campestris pv. campestris gDNA
was performed as previously described (51). One selective nucleotide was
used on each adapter-specific primer. All 16 possible primer combina-
tions but Sac-T/Msp-C were used. The presence/absence of DNA frag-
ments was determined using GeneMapper (Applied Biosystems, CA) with
the following criteria: a size between 60 and 500 bp, a peak area of �1,000,
a peak high of �800 relative fluorescence units, and no signal in negative
controls.

Phylogeny and molecular evolutionary genetics. Phylogenetic dis-
tances among strains were estimated from AFLP marker data using Dice
similarity indices with 5,000 bootstraps. The Dice coefficient of similarity
among strains was used to construct a weighted neighbor-joining tree
using the Darwin software package (version 5.0.158; http://darwin.cirad
.fr/Home.php). The robustness of the tree was assessed by bootstrapping
(5,000 resamplings).

The allelic frequency of nonnull alleles was set equal to the frequency
of the AFLP fragment in the sample. The Nei gene diversity index h was
estimated using the sample allele frequencies from all AFLP markers (52).
The estimate of the linkage disequilibrium between all pairs of polymor-
phic markers with a minor allele frequency of �5% was calculated using
an extension of the usual R2 measure, which accounts for the relatedness
between the genotypes per the R2V in R package LDcorSV (53). The kin-
ship matrix used to estimate R2V was calculated from the dissimilarity
matrix produced by neighbor-joining analysis.

Mutagenesis of X. campestris pv. campestris. Deletion mutants in X.
campestris pv. campestris were obtained using the SacB system with a
pK18 suicide vector (54) modified for GoldenGate cloning (55). To this
end, the pDONR207 ccdB-Cmr cassette (Invitrogen) was amplified using
primers LN431/LN432 (sequences are available upon request) and cloned
into pK18 at the HindIII and XbaI sites, giving p�13. Primers used for
amplification of sequences flanking the deleted region are available upon
request. Plasmids were introduced into E. coli by electroporation and into
X. campestris pv. campestris by triparental mating as described previously

(56, 57). Deletion events were selected as previously described (54) and
verified by PCR (primer details are available upon request).

Complementation of xopAC and xopAM deletion mutants. For
complementation studies, the xopAC promoter and coding sequence were
amplified from X. campestris pv. campestris 8004 (haplotype A), X. camp-
estris pv. campestris B100 (haplotype B), X. campestris pv. campestris
CN01 (haplotype C), and X. campestris pv. campestris CN05 (haplotype
D). Amplicons were cloned into pCZ917 (58), giving pCZ917-xopACA,
pCZ917-xopACB, pCZ917-xopACC, and pCZ917-xopACD, respectively.
pCZ917 is a plasmid derived from pFAJ1700 (59) with the lacI gene, Ptac
promoter, and T7 terminator. The xopAM promoter and coding se-
quences were amplified from X. campestris pv. campestris 8004, cloned
into the pCRII-Blunt vector (Invitrogen), and used for cointegration into
pFAJ1700, giving pFAJ1700-xopAM. All primer sequences used for PCR
amplification are available upon request. Cloning details are available
upon request. DNA manipulations were performed with standard proto-
cols as described previously (60). Plasmids were introduced into E. coli by
electroporation and into X. campestris pv. campestris using pRK2073 as a
helper plasmid in triparental matings (56, 57).

Statistical analyses. The upper bound of the broad-sense heritability
(H2) of the raw phenotypic data was calculated using the mean squares
method (33). The model coefficients for each bacterial strain were calcu-
lated using an ordinal logistic regression model (function “lmr” in pack-
age “rms” in R). The strain, plant, and experiment effects were included in
the model. Association studies were carried out using the coefficients at 7
dpi.

An efficient mixed-model analysis with a likelihood ratio test from the
“emma” package in R (function “emma.ML.LRT”) was used to test for an
association between trait and genetic marker (3). All AFLP markers with a
minor allele frequency of �5% were tested. For T3SP markers, singletons
were excluded. A total of 960 markers were tested, marker by marker. To
control for confounding effects of genetic relatedness in the sample, a
similarity matrix, which is 1 minus the dissimilarity matrix constructed
from the neighbor-joining tree, was used. We obtained a much greater
statistical power using the phylogeny-based kinship matrix than the kin-
ship matrix calculated in the emma package.

A nonparametric Wilcoxon test (R function “wilcox.test”) was per-
formed to see association results without correction for genetic related-
ness. For the association tests using SNP data at the xopAC locus with only
28 strains, a Wilcoxon test was performed to compare the phenotypic
values among the four haplotypes, and we used the emma and Wilcoxon
tests to search for an association with SNPs.

To correct for false positives when hundreds of association tests were
performed, significance thresholds were adjusted using a false discovery
rate set at 0.05 (61). The function “mt.rawp2adjp” of the “multtest” pack-
age in Bioconductor was used. At each significant marker, effect size was
defined as the difference between the mean phenotypic values of the two
alleles.

The effects of the single-gene deletions and complementations were
assessed from a nonparametric Kruskal-Wallis test, using the “kruskal”
function in the package “agricolae” in R software. The significance thresh-
old for multiple pairwise comparisons was set at 0.001.

All analyses were performed using R software version 2.14.1 (http:
//www.r-project.org).

Nucleotide sequence accession numbers. GenBank accession num-
bers for the 29 xopAC loci and the 44 5= sequences of fliC from X. camp-
estris are JX453111 to JX453139 and JX453140 to JX453183, respectively.
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